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Microprocessor-based pacemaker design

Surekha Palreddy

The purpose of this appendix is to present the design of a simple microprocessor-based pacemaker XE  "microprocessor-based pacemaker"  given the algorithm to be implemented. The rate-adaptive pacemaker responsive to variations in the cardiac AV interval (Baker, 1988) is selected as an example to illustrate the method of design. 

A.1  Rate-adaptive pacemakers

Cardiac pacemakers that provide pacing stimuli to the heart at a predetermined rate are sufficient to sustain life but are incapable of responding to the changing cardiac demands that accompany daily life including physical exertion. Rate-adaptive pacemakers overcome this limitation. Rate-adaptive pacemakers have been developed that respond to various physiological parameters such as the oxygen content of the blood, blood pressure, respiratory volume, and blood pH.


The AV rate-responsive pacemaker is considered here as an example to explain the design process of a microprocessor-based pacemaker provides rate-adaptive pacing responsive to the physiology of the heart in patients with intact AV conduction.


The AV rate-responsive algorithm is used to adjust the pacing rate of the heart according to the patients AV conduction time. Implementation of this algorithm depends on the detection of the P wave and the Q wave. Two timers are used to track the patient’s AV interval (time interval between the P wave and Q wave) and pacing escape interval. Based on the intervals measured, the algorithm calculates and updates the pacing escape interval regularly. The algorithm requires detailed study before the microprocessor instruction set is designed. The rate adaptive pacemaker algorithm explained in Baker’s patent was chosen to illustrate the design process. The instruction set architecture and the code were used for the purpose of a course project (VLSI systems design) at the University of Wisconsin–Madison. Members of the project team were David Burger, Kirk Dunsavage, and Surekha Palreddy. The project was not completed. Therefore, no claims are made for accuracy of the design. The discussion is intended to give the reader an understanding of the design process.


The AV interval, as described here, is the time interval between the depolarization of the atrium and the ventricle. It varies with physical exertion due to increased catecholamine circulation indicative of increased cardiac demand (Baker, 1988). The AV-responsive algorithm must detect the P wave and Q wave of the electrocardiogram which can be accurately detected. The AV interval is directly related to the conduction time through the AV node. The AV node when fatigued is characterized by increased conduction time in response to increased heart rate. This occurs since it is unaccompanied by increased catecholamine circulation. This property eliminates the risk of pacemaker-induced tachycardia. A pacemaker utilizing reduction in AV interval as the pacing control parameter naturally tends to oppose increases in pacing rate unless accompanied by increased physical exertion. 


This pacemaker includes: (1) separate functions for tracking spontaneously occurring atrial cardiac activity and for atrial pacing when appropriate, (2) gradual rate response similar to that of a normally functioning human heart, and (3) a built-in bias toward spontaneous rather than paced cardiac activity.

A.2  Microprocessor design

This pacemaker detects the onset of atrial depolarizations by detecting the P wave and the subsequent ventricular depolarization by identifying the Q wave. The microprocessor provides the pacemaker computational abilities and control. Other forms of analog or digital circuitry can be used in place of the microprocessor. A microprocessor is preferred for its miniature size and its flexibility, both of which are of critical importance in the implantable system (Figure A.1). A microprocessor is designed with input–output ports connected in a conventional manner via a bidirectional bus to memory, an AV timer, and a pacing timer. The timers are external to the microprocessor and are conventional up or down counters of the type that are initially loaded with a count value and count up or down from the value and output a roll-over bit upon completing the programmed count. The initial count values are loaded into the timers and the roll-over bits are output to the microprocessor.
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Figure A.1  Block diagram of a microprocessor-based pacemaker, which contains the fundamental components required to implement the AV rate-responsive algorithm (Baker, 1988). 


The microprocessor is designed with memory, both ROM and RAM. The pacemaker operating routine is stored in ROM, while RAM stores the various programmable parameters and variables that are used in conjunction with the pacemaker operation and the preferred rate-control algorithm. An input/output port to the telemetry interface is also provided. The implanted pacemaker is thus enabled to receive pacing and rate-control parameters from an external programmer and send data to an external receiver. 


The output ports of the microprocessor are connected to inputs of an atrial stimulus pulse generator and a ventricular stimulus pulse generator. The pulse parameter data, such as amplitude and width, as well as enable/disable and pulse initiation codes are transmitted to the generators from the microprocessor. The input ports of the microprocessor are connected to the outputs of the atrial and ventricular sense amplifiers to detect the occurrences of P waves and Q waves. The sense amplifiers output a signal to the microprocessor when a P wave or a Q wave is detected on respective lines of information. The signal is latched to the microprocessor input by a conventional latch. The pacemaker is operated by a dual clock XE  "dual clock"  mechanism. The timers are operated with a low- frequency clock in the sleep phase when the microprocessor is at rest. The occurrence of an interesting event alerts the microprocessor by enabling its high-frequency clock to perform the required calculation quickly (Chapter 10). The dual clock design of the pacemaker helps save battery power in implantable devices. Pacemaker designs are implemented using CMOS technology to take advantage of the circuitry’s low power requirements.

A.3  Software algorithm: AV-responsive rate-adaptive algorithm

Figure A.2 and Figure A.3 show the flowcharts of the AV rate-responsive algorithm XE  "rate-responsive algorithm"  (adapted from Baker, 1988). When the microprocessor is alerted from a sleep state to execute the control algorithm, it tests to determine if a P wave has been detected. If a P wave has been detected, the AV interval timer is loaded with a maxAV interval1 (programmed) value and enabled to start counting. The pacing interval timer is also loaded with the current pacing interval value (from RAM) and is enabled to start counting. A paced/sensed flag is cleared (‘0’) to indicate that spontaneous atrial activity was sensed. The algorithm then puts the microprocessor to sleep until another wakeup event XE  "wakeup event"  is encountered.
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Figure A.2  The AV rate-responsive algorithm. The detection of P-wave, Q-wave and time-out signals from the AV interval timer and pacer interval timer serve as wakeup events to the microprocessor (Baker, 1988). 


If a P wave is not detected, the microprocessor tests to determine if a Q wave has been detected. If a Q wave has been detected, the current count value of the AV timer is read by the microprocessor and reset. The difference between the initial AV timer count and the value read indicates the elapsed time between the detected P wave and Q wave. The control is then passed to the pacing interval calculation algorithm. A new pacing interval is calculated by the pacing routine based on the measured AV interval. The value of the pacing interval sets the time after the occurrence of a P wave in which another P wave must occur to inhibit atrial pacing. Upon returning from the pacing routine, the new pacing interval is stored in memory before the microprocessor enters the sleep state XE  "sleep state" . 


If no P wave or Q wave has been detected, the microprocessor tests to determine if the maximal AV interval has expired. If the AV interval timer has timed out without the detection of a Q wave, the ventricular pulse parameters are loaded into the ventricular pulse generator and a pulse is initiated. The AV timer is reset before going into the sleep state.
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Figure A.3  The pace routine to calculate the new pacing interval, based on the recorded AV interval and the programmed parameters. TAV refers to the measured AV interval (Baker, 1988). 


If no P wave or Q wave has been detected and the AV interval has not timed out, the microprocessor tests to determine if the pacing interval timer has expired. If the pacing interval timer has timed out, without a P wave being detected, the control initiates pacing of the atrium by loading atrial pulse parameters into the atrial pulse generator. The control algorithm then loads the AV interval timer with max AVinterval2 and the pacing interval timer with the current pacing interval. The paced/sensed flag is set (“1”) to indicate that the atrium has been paced before entering the sleep state. 


Figure A.5 shows the various programmable parameters used in the algorithm for calculating a new pacing interval based on the AV interval. 


The microprocessor enters the wakeup state only when one of the above four conditions are detected to perform the appropriate functions before going to the sleep state again.
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Figure A.4  The rate response function XE  "rate response function"  of the AV rate-responsive pacemaker. Pacing rate is calculated as a function of the patient’s measured AV interval. Two different linear functions are indicated for rate calculation based on whether the atrium is paced or sensed in the previous cardiac cycle. This compensates for the differences in conduction delay when the atrium is paced and when it is sensed. Linear functions are preferred for ease of calculation. Min interval (0.5 s) corresponds to 120 bpm and Max interval (1 s) corresponds to 60 bpm (Baker, 1988). 

	Parameter
	Normal Value
	Identifier

	MAX AV interval  1
	200 ms
	MxAV1

	MAX AV interval 2
	160 ms
	MxAV2

	Min interval
	500 ms
	MnInt

	Slope P
	15 ms/ms
	SloP

	Slope S
	15 ms/ms
	SloS

	Offset P
	2000 ms
	OffP

	Offset S
	1400 ms
	OffS

	Max count
	20 ms
	MxCnt

	Increment
	10 ms
	Inc

	Delta
	100 ms
	Delta

	Ventricle pulse width
	Programmable
	VentPW

	Ventricle pulse amplitude
	Programmable
	VentPA

	Atrial pulse width
	Programmable
	AtrialPW

	Atrial pulse amplitude
	Programmable
	AtrialPA


Figure A.5  The parameters used in the AV rate-responsive algorithm for calculating a new pacing interval based on AV interval and programmed parameters.  


Some of the special features of the pacing interval calculation algorithm are discussed briefly to indicate the robustness of the algorithm in considering the effects of premature ventricular beats which may affect the calculated pacing interval and also to maintain the heart rate between the desired maximal and minimal rate intervals.  


The pacing interval calculation algorithm calculates the new pacing interval only when the atrium is paced (“1”) or sensed (“0”) in the previous cardiac cycle. If the atrium is not paced or sensed in the previous cardiac cycle and the sensed/paced flag is set to “2” indicating a premature ventricular contraction, the routine returns control to the main function returning to the previously calculated pacing interval. 


If the atrium is paced in the previous cardiac cycle, the algorithm increments the paced count (to keep track of successive paced beats), and the new pacing interval is calculated as a function of the paced linear function as shown in Figure A.4. If the atrium was sensed in the previous cardiac cycle, the paced count is reset to zero and the new pacing interval is calculated as a function of the sensed linear function as shown in Figure A.4. 


The difference between the sensed and paced linear functions (slopes and offsets), which map the measured AV interval to a new pacing interval is to compensate for the effects of spontaneous and induced cardiac activity on the new pacing interval. When the atrium is paced, the exact onset of the P wave is known, whereas there is a delay associated with P-wave detection when the atrium is sensed. To avoid these time delays which influence the calculation of the new pacing interval, the offset and slope of the functions are adjusted accordingly.


If the new calculated pacing interval is less than the current pacing interval, the current pacing interval is incremented by a prefixed amount “increment”. If the incremented current pacing interval is greater than the new pacing interval, the current pacing interval is set to the new pacing interval. If the current pacing interval is greater than the new pacing interval, the current pacing interval is decremented by a prefixed amount. If the decremented value is less than the new pacing interval, it is set equal to the new pacing interval. This helps to avoid the rapid increase in pacing rate due to increased catecholamine with the onset of exercise. This algorithm provides a smooth gradual response as is obtained in a natural heart. 


The algorithm also tests to determine if the paced count exceeded a predetermined maximal count. If the paced count is greater than or equal to the maximal count (i.e. the atrium has been paced for the past maximal count cardiac cycles), the paced count is reset and the current pacing interval is incremented by a prefixed amount “delta”. This adjustment enables the emergence of spontaneous activity in the atrium, if present. 


Finally, before control is returned to the main program, the sensed/paced flag is set to “2” to avoid the sensing of a premature ventricular contraction from incorrectly influencing the pacing rate.

A.4  Design process 

To facilitate the design of a microprocessor-based pacemaker, the algorithm that needs to be implemented is thoroughly studied to understand its special requirements. The flow chart of the algorithm is then converted into pseudo code. Based on the pseudo code, the instruction set architecture of the microprocessor is decided. 

A.4.1 Pseudo code XE  "Pseudo code" 
The flowchart of the AV rate-responsive algorithm is transformed into pseudo-code in Figure A.6.

if( Asense == 1)





Load MaxAV1
–> R7





Loadtimer
R7
–> AVtimer




Load Paceint    
–> R6





Loadtimer
R6
–> Pacetimer


LoadImm
R1
#0


# (Paceflag = 0)          


SLEEP






if( Vsense == 1)


Storetimer R7
<– AVtimer




Load MaxAv1
–> R6





Loadtimer
R6
–> AVtimer


Load Paceaddr
–> R5


Jump&Link
R5(to)
R4(return)





Store
R3(Acc)
–> newpaceint




SLEEP







if( AVtimerout == 1)


Load Vepulwid
–> R7


Load Vepulamp
–> R6


Enable 




# (R7 & R6)





Load MaxAV1
–> R5


Loadtimer
R5
–> AVtimer


SLEEP

if(Pacetimerout == 1)


Load Atpulwid
–> R7


Load Atpulamp
–> R6


Enable 




# (R7 & R6)


Load MaxAV2
–> R5


Loadtimer
R5
–> AVtimer


Load Paceint
–> R4


Loadtimer
R4
–> Pacetimer


LoadImm
R1
#1   

# (Paceflag = Pace ‘1’)


SLEEP

Paceaddr:

if(paceflag = ‘2’)


Load curpaceint
–> R3


JAL
R4(to) R5(from)


BNE(paceflag,R0) Else1


Store
R0

–> PAcount




Load SlopeS
–> R3




Mult R3 R7




# R3 <– R3 * R7



Load OffsetS
–> R6




Add R3 R6




# R3 <– R3 + R6



Store R3

–> Newpaceint



JMP
Loop1




Else1:








Load PAcount
–> R3


Increment R3 



# R3 <– R3 + 1


Store
R3

–> PAcount


Load SlopeP
–> R3


Mult R3 R7




# R3 <– R3 * R7


Load OffsetP
–> R6


Add R3 R6




# R3 <– R3 + R6


Store R3

–> Newpaceint

Loop1:


Load Newpaceint 
–> R6


Load curpaceint 
–> R3


Load Incre

–> R5


BGE(R3 >= R5) Else2





Add R3 R5




# R3 <– R3 + R5



Store R3

–> curpaceint


BLE(R3 =< R6) Else2




Else3:








Store R6
 
–> curpaceint


JMP loop2



Else2:


Sub R3 R5




# R3 <– R3 - R5


Store
R3

–> curpaceint


BLT(R3 < R6) Else3




Loop2:








Load Minint 
–> R6


BGE(R3 > R6) Else4



Store
R6

–> curpaceint

Else4:


Load Maxcount
–> R6


Load PAcount
–> R3




BGE ( R3 >= R6) Loop3





Load curpaceint 
–> R3

# R3 <– Curpaceinterval


JAL R4(to) R5(from) 

 
# R4 <– (return);









# R5 <– (present)

Loop3:


Load R0

–> PAcount 
# R0 <– PAcount


Load Delta

–> R6
 
# R6 <– Delta


Load curpaceint
–> R3



Add R3 R6




# R3 <– R3 + R6


LoadImm R1 #2 



# (Paceflag = '2')


JAL R4(to)
R5(from)

Figure A.6 The flowchart of the AV rate responsive algorithms discussed by Baker, 1988 is converted into a Pseudo code to decide upon the instruction set architecture.

A.4.2 Instruction set design XE  "Instruction set design" 
The commands that a microprocessor executes are instructions. They are a collection of binary bits that a processor understands. The words of such a machine language are instructions and its vocabulary the instruction set. Simple instructions are selected to constitute the instruction set so as to implement the proposed algorithm efficiently. The selection of an instruction set plays a role in deciding the hardware (datapath elements) and hence the complexity of datapath and control. For applications such as a pacemaker, in which several algorithms can be loaded and modified via telemetry, reduced instruction set architecture (RISC) is useful. The simple and basic instructions of this architecture can be used to code any complex algorithm without much difficulty. Each instruction takes a few clock cycles for execution. However, to accommodate the power-saving features of a pacemaker such as the dual clock mechanism, some special instructions need to be added to the instruction set.


Instructions are broadly classified into Load/store, Arithmetic and logic unit XE  "Arithmetic and logic unit"  (ALU), control, and special purpose instructions. Due to a lack of information on the instruction set architecture of commercially available pacemakers, we designed our own instruction set based on the need for proper programming of the selected algorithm. This instruction set architecture is presented here to illustrate the design process of a microprocessor-based pacemaker.


The instruction format (bit patterns) for each instruction were chosen by grouping them into functional classes. The instructions fetched from memory are 8 bits long. Each instruction has an opcode field and a register specifier or offset field. The opcode field indicates the type of the instruction that was fetched. The register specifier indicates the address of the register in the register file on which the operations are performed. The offset field in branch and jump instructions is used to calculate the address of the memory location, the control needs to be transferred to. 


General register operations:

	Opcode field (7 - 3)
	Register  or offset field  (2 - 0)



We chose an accumulator-based architecture in which all the arithmetic and logic operations are performed between the register specified and the accumulator. This architecture is preferred by the designers as the accumulator is implicitly specified obviating the need for more instructional bits. This would allow more “bits” to be used by the opcode and hence room for more instructions in the instruction set.


The instruction set is shown in Figure A.7

A.4 3 Datapath XE  "Datapath" 
After the instruction set is designed, the hardware components required to execute the instructions are identified which constitute the datapath. Based on the complexity of the algorithms that need to be implemented, the size of storage elements such as the register file, ROM and RAM is decided.


A register file is a collection of registers in which any register can be read from or written to by specifying the number of the register in the file. The proposed design has eight registers, with three special purpose registers(0–2) and five general purpose registers (3–7), as shown in Figure A.8. Register “0” always holds the value “zero”. Register “1” is dedicated to the sensed/paced flag. Register “3” is an accumulator on which all the arithmetic and logic operations are performed. The read/write address port provides a 3-bit address to identify the register being read or written into. The write data port provides 8-bit data to be written into the registers either from RAM or timers. Read enable control, when asserted enables the register file to provide data at the read data port. Write enable control enables writing of data being provided at the write data port into a register specified by the read/write address.


The instructions and programmable parameters are stored in 256 bytes of ROM (Read only memory). The load/store instructions can read data from and write data  into the locations of this memory. The parameters used in the AV rate-responsive pacemaker are listed in Figure A.5. The intermediate parameters are stored in RAM (Random access memory).


Two timers are required to implement an AV rate-responsive pacemaker. One is used to measure the AV interval (T1) and the other for the pacing interval (T2). The timers are read and written into just as any other  memory location. These timers are provided with read and write enable controls. 

	Instruction
	Function

	LDI  ###
	Load Accumulator with 3-bit immediate value

	LD   (rx)
	Load Accumulator with ROM location (rx)

	LDR3I  #####
	Load R3 with 5-bit immediate value

	LDFLG
	Load wakeup condition inputs into R2

	LDACC  (rx)
	Load Accumulator with RAM location (rx)

	LDT1  rx
	Load Timer #1 with value in rx

	LDT2  rx
	Load Timer #2 with value in rx

	ST      (rx)
	Store Accumulator with ROM location specified in rx

	STT1   rx
	Store Timer #1 in rx

	STT2   rx
	Store Timer #2 in rx

	ALU
	

	CP       rx
	Copy Accumulator to rx

	ADD   rx
	Add rx to accumulator

	SUB    rx
	Subtract (rx) from accumulator

	INC     rx
	Increment rx

	DEC    rx
	Decrement rx

	SHR    rx
	Shift accumulator right by amount in rx

	SHL    rx
	Shift accumulator left by amount in rx

	NOP
	No operation

	Control
	

	BGE   rx
	Branch if (acc) ≥ (rx)

	BLT   rx
	Branch if (acc) ≤ (rx)

	BEQ   rx
	Branch if (acc) == (rx)

	JMP    rx
	Jump to memory location in rx

	Special
	

	SLEEP
	Put the microprocessor to sleep


Figure A.7. The instruction set XE  "instruction set"  designed to implement the AV rate-responsive algorithm.
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Figure A.8. A schematic diagram of the register file, timers XE  "timers"  and ROM/RAM. Three registers of the register file are dedicated for special purposes and the rest are general purpose registers. An instruction register is used to load the instruction fetched from memory.


Each of these datapath elements have control signals that need to be set appropriately during different clock cycles of the instruction execution. Data flows from one element to the other along the datapath when appropriate signals are set by the control.


The  datapath of the pacemaker designed by the group based on the discussed considerations is as shown in Figure A.9.

A.4.4 Control and finite state machine XE  "finite state machine" 
Control  tells the datapath and Input/Output devices what to do according to the wishes of the instructions of the program. The method used to specify the multicycle control is a finite state machine. A finite state machine consists of a set of states and directions on how to change states. Each state specifies a set of controls that need to be asserted when the machine is in that state. An example of a state machine for RISC instructions is shown in Chapter 10. The control is designed to be implemented using a programmable logic array (PLA), which enables the forcing of any set of output conditions in response to any set of defined input conditions. The PLA is programmed to set the required controls of the datapath elements shown in Figure A.9 based on the opcode of the instruction being executed. Since each instruction is executed in several clock cycles, a state register is used as part of the control to indicate the next state to be executed. The state machine changes states based on the inputs from the opcode of the instruction and the state register. For more information on the design of control, the book Computer organization & design: The hardware/software interface serves as an excellent reference.

A.5  Program execution 

Once the datapath and control are designed, the required algorithm that needs to be executed is loaded into the memory of the microprocessor. Each instruction from the memory is fetched one at a time and executed by setting the appropriate controls. The loaded programs could be modified or updated with newer versions by the use of telemetry. The simple instruction architecture chosen makes it easy to implement complex algorithms with relatively simple hardware.
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