

Design of cardiac pacemakers

Logic implementation

10

Logic Implementation XE "Logic Implementation"
Surekha Palreddy

A variety of implantable devices supplement or replace impaired body functions. Artificial pacemakers are the devices used to stimulate an impaired heart to maintain the steady pumping action needed to sustain life. Such devices can be implanted in patients for ten or more years and function from a single battery.

The failures of early pulse generators indicated a need for reducing the number of manually soldered electronic interconnections. Size was also a constraint, limiting the number of discrete components that could be used. Functions such as programmability could not be implemented and high power consumption of the discrete components was another limitation that shortened the life of the pulse generator battery. These problems were overcome with the development of miniature highly sophisticated integrated circuits. All the present day pulse generator circuits are composed of miniature integrated circuits and a small mix of discrete components.

The microelectronic technology that has revolutionized the computer industry has also revolutionized the pacemaker industry. The semiconductors used in pacemakers allow handling of complex information in a small space at a relatively low cost with little expenditure of energy, a high degree of reliability, and little generation of heat.

10.1 Microprocessor-based pacemaker XE "Microprocessor-based pacemaker" unit

Microprocessors are the devices which incorporate necessary electronic components to perform arithmetic calculations with the small size needed for implantable devices. Some of the microprocessor chips which are designed for a specific application differ from standard microprocessors to some extent and are referred to as microcontrollers. However, the distinction between the microprocessors and microcontrollers is not very clear and a microprocessor-based pacemaker is often referred to as a microcontroller. Microprocessors are designed with the capability to accept data from various body sensors, analyze the data, and generate a response appropriate for that particular analysis. This property greatly enhances the capabilities of microprocessor-based implantable devices. But the relatively large power consumption required to operate such devices make it impossible to use them for battery-operated implantable devices. This problem is solved by using custom digital designs implemented in CMOS technology, which has a very low current demand.

 EMBED Word.Picture.8

Figure 10.1 Functional block diagram of a microprocessor-based pacemaker. RAM and ROM are the memory units to store the parameters and programs to be executed. Analog signals from the sensors are converted into digital form by the ADCs. DACs generate a stimulation pulse. The microprocessor is also interfaced with the telemetry unit to provide flexibility in programming the parameters and execution algorithms.

This chapter describes the logic implementation of a microprocessor-based pacemaker. DDD, the most versatile mode of the pacemakers, is selected as an example to explain the concepts. The components identified as the digital unit in Figure 10.1 will be discussed in greater detail here. The concepts of certain safety features that are essential for a pacemaker are also presented.

10.2 Pacemaker requirements XE "Pacemaker requirements"
The basic requirement of a pacemaker is to pace the heart when needed. Other functions include the ability to sense the cardiac signals. Multiprogrammability adds flexibility in choosing parameters of the pacing pulse and also to monitor the data storage. Some pacemakers are provided with diagnostic capabilities that can be used for therapy. VLSI technology makes it feasible to integrate all these features of the pacemaker onto a small chip. Some of the basic requirements of a pacemaker are:

Basic functions: Pace, sense, programmable, diagnostic, interactive

High reliability: 0.005% failures/month

Adequate longevity: 7–10 years

Small size: 10 mm thick, 25–50 g

Simple to be programmed by a physician

The functions of a pacemaker depend completely on the electronic control system. Therefore, selection of electronic technology that provides the pacemaker requirements forms the basis to pacemaker therapy.

10.3 Choice of electronic technology XE "electronic technology"
The electronic control of an implantable pacemaker can be designed using custom integrated circuits designed specifically for pacemakers, or microprocessor-based circuits with custom software, or some combination of these two. This section discusses the several aspects of these different combinations of electronic technologies (Hartlaub, 1982).

There are two types of custom integrated circuits: digital (control) circuits and analog (sensing) circuits. Comparison of technologies is based only on digital circuits used for the control. Analog circuits are used for amplification and sensing functions in pacemakers, but they do not provide flexibility in controlling the functions such as pulse rate, width, mode, etc.

A custom circuit is described as a digital integrated circuit, designed for a specific application and composed of a collection of logic elements connected in a unique fashion. The circuit is put together with tens of thousands of transistors on a small chip with VLSI techniques. The development of a large scale integrated custom circuit is very time-consuming and expensive. However, these custom circuits provide multiprogrammability and complex pacing modalities with adequate low current drain and excellent reliability.

A microprocessor-based pacemaker has more flexibility and added capabilities. Capabilities such as monitoring or storing data, data processing, and increased flexibility in functional changes of the software-based system are added advantages of a microprocessor-based system. Additional functions such as rate-responsive pacing can be made available with inputs from physiological sensors. While these additional functions are achievable using custom circuits, there is more flexibility and capacity for future growth in a microprocessor-based system.

The four alternative combinations of above electronic technologies for implementing a pacemaker have some advantages and disadvantages, as summarized in Figure 10.2. Custom, random logic-based design has the advantage of being a known technology, with adequate reliability, and the capability to provide both multiprogrammable and physiological pacing systems. The disadvantages include little or no capability to monitor and process data and limited flexibility for modifying existing designs.

The combination of custom random logic to control pacing functions and a commercially available microprocessor to monitor and process data would give adequate reliability but is severely limited with excessive current drain and complexity. Also, there is limited pacing flexibility as the pacing control resides in the custom circuits.

	
 Alternatives
	 Advantages
	 Disadvantages

	Custom random

 logic circuit
	Known technology

Adequately reliable
	Minimal processing

Limited flexibility

	Combination

 custom random logic

 (pacing functions)

 Available microprocessor

 (monitor/data process)
	Monitoring and

 data processing

Basic pacing

 functions reliable
	Limited added functions

 for added current

Complex, multiple chips

Limited pacing flexibility

	Available

 microprocessor
	Hardware constant
	Needs some custom circuits

High current drain (short

 pacemaker longevity)

	Custom

 microprocessor
	All functions possible

 (At low current drain)

Hardware constant
	Reliable

Big expensive design

 program

Figure 10.2 The advantages and disadvantages of the four different combinations of electronic technologies for implementing a pacemaker.

A commercially available microprocessor with no custom digital circuits is impractical with high current drain making it impractical to operate for a battery operated implantable device. However, the current-day technology is providing the means to manufacture low current drain microprocessors to some extent.

A custom microprocessor designed specifically for a cardiac pacemaker would have an optimized architecture as well as an optimized instruction set to maximize the computational power in the pacemaker application. The advantage of this method includes the maximal computational power with minimal current drain, and the detailed architectural knowledge helps in simulating the operations to demonstrate reliability.

10.4 Pacemaker system architecture XE "architecture"
The digital portion of an integrated circuit-based pacemaker performs the timing, memory, and analog interface functions and logical decisions of the pacemaker system. For a technologically advanced pacemaker these functions are of sufficient complexity to require, if not demand, a microprocessor-based system in order to be consistent with a practical design concept. An advanced pacemaker system derived from a fixed, hardwired logic concept is likely to have the complexity of a microprocessor-based system and the disadvantages of an inflexible, nonprogrammable design concept.

10.4.1 A state machine-based pacemaker

A pacemaker is basically a timer that changes its functional states in response to elapsed intervals or sensed signals. This operation suggests the application of a known concept such as a state machine, in which the processor moves from one state to the next in response to time-out signals or an externally-sensed signal. Each state has its own conditional set of rules that will steer the processor to its next state based on the inputs. Figure 10.3 shows a simple state machine pacemaker. Each node in the figure represents a state of the pacemaker. The pace timing cycle starts at state 0 which is “Start”. The state of the pacemaker is changed to either state 1 or state 2, depending on the sensed wave. If a P wave is sensed, the state of the pacemaker changes to state 1 inhibiting atrial stimulation pulse, and if an R wave is sensed when in state 1, the processor moves to state 2, inhibiting the ventricular stimulation pulse. If the R wave is not sensed in state 1, the processor will provide a stimulus to the heart after the “ventricular refractory period exceeded” signal is set and moves to state 3. Similarly, atrium is paced when P wave is not sensed and atrial refractory period is expired.

This state machine XE "state machine" can be implemented with a programmable logic array (PLA). A PLA can be visualized as a device that will enable the programmer to force any desired set of output conditions in response to any set of defined input conditions.

10.4.2 Microprocessor-based system architecture

A typical microprocessor-based pacemaker has a CPU as the core of the system to control the overall operations of the pacemaker system. The coded program instructions are stored in ROM (read-only memory XE "read-only memory"), while the temporary data used during system operation are stored in RAM (random access memory XE "random access memory").

 EMBED Word.Picture.8

Figure 10.3 A simplified state-machine pacemaker. The processor changes state in response to elapsed intervals and sensed signals. Each node in the diagram represents a state, and every state has its unique set of rules to steer the processor from one state to another based on the inputs. From Schaldach, M. 1992. Electrotherapy of the Heart. Berlin: Springer-Verlag.

A microprocessor controls the response of a pacemaker to various external physiological events and internal timer events. It is customized for use with the limited energy supply available from a battery by activating internal logic components of the processor only in response to selected events and to perform an operating routine corresponding to the “wakeup” event. External events are sensed to derive signals to indicate occurrences such as atrial or ventricular beats. Internal timers may awake the processor to generate output pulse commands and to sense external events during selected physiological intervals.

Figure 10.4 shows the general components of an 8-bit microprocessor-based pacemaker. It comprises a ROM to store the instructions of the program to be executed and various programmable parameters, a RAM to store the various intermediate parameters, timers to track the elapsed intervals, a register file to hold intermediate values, an ALU to perform the arithmetic calculations, and other auxiliary units that enhance the performance of a microprocessor-based pacing system.

The size of ROM and RAM units are selected based on the requirements of the algorithms and the parameters to be stored. The number of registers in the register file are decided based upon the complexity of computation and the required number of intermediate values. Timers of different precision are used to measure the elapsed intervals.

The two main components of a microprocessor are the datapath and control. The datapath performs the arithmetic operations and the control directs the datapath, memory, and I/O devices to execute the instructions of the program. The hardware components of the microprocessor are designed to execute a set of simple instructions. The complexity of the instruction set determines the complexity of datapath elements and controls of the microprocessor.

 EMBED Word.Picture.8

Figure 10.4 Functional block diagram of a microprocessor-based pacemaker. Memory unit ROM is used to store the instructions of the program, RAM to store the various programmable parameters, timers to keep track of the elapsed intervals, register file to store intermediate values, an ALU to perform the arithmetic calculations, and other auxiliary units that enhance the performance of a microprocessor-based pacing system.

A microprocessor may be provided with a fixed operating routine or may be provided with the capability of actually introducing program changes in the implanted device. The instruction set of the microprocessor, the size of the register files, RAM and ROM are selected based on the performance needed and the type of the algorithms used. For the applications such as pacemakers, in which several algorithms can be loaded and modified, Reduced Instruction Set Computer XE "Reduced Instruction Set Computer" (RISC) architecture is useful. RISC architecture offers advantages because it can be optimized to reduce the instruction cycle which in turn reduces the run time of the program and hence the current drain. The simple instruction set architecture of RISC and its simple hardware can be used to implement any algorithm without much difficulty. Since size is also a major consideration, an 8-bit microprocessor is used for the purpose. As most of the arithmetic calculations are based on a few parameters and are rather simple, an accumulator architecture is used to save bits from specifying registers. Each instruction is executed in multiple clock cycles, and the clock cycles are broadly classified into five stages: an instruction fetch, instruction decode, execution, memory reference, and write back stages. Depending on the type of the instruction, all or some of these stages are executed for proper completion.

The design process of a simple customized microprocessor with a rate-responsive algorithm as an example is discussed in detail in the Appendix. The various steps involved in the design of a microprocessor are briefly discussed here.

Instruction set XE "Instruction set"
Initially, an optimal instruction set architecture is selected based on the algorithm to be implemented and also taking into consideration the special needs of a microprocessor based pacemaker. Figure 10.5 shows that for RISC architecture, the instructions are broadly classified into Load/store instructions, Arithmetic and logic instructions(ALU), control instructions, and special purpose instructions.

	Load/store instructions
	

	Load reg addr
	 Loads a value from RAM into a register

	Load immediate
	 Loads a number specified into the accumulator

	Loadtimer reg timer
	 Loads a value from a register into a timer

	Store reg addr
	 Stores the value in a register into RAM

	Storetimer reg timer
	 Stores the value in timer to a register

	ALU instructions
	

	Add reg
	 Add a value from a register to accumulator

	Sub reg
	 Subtract a contents of a register from accumulator

	Mult reg
	 Multiplies the value in a register with accumulator

	Increment reg
	 Increments the value in register by one

	Decrement reg
	 Decrements the value in a register by one

	Control instructions
	

	BGE reg1 reg2
	 Branch when (reg1) ≥ (reg2)

	BLE reg1 reg2
	 Branch when (reg1) ≤ (reg2)

	BLT reg1 reg2
	 Branch when (reg1) < (reg2)

	Jump addr
	 Jump to the specified address

	Special instruction
	

	SLEEP
	 Puts the microprocessor to sleep

Figure 10.5. A simple instruction set for RISC machines.

Instruction format XE "Instruction format"
The instruction format is decided based upon the total number of instructions in the instruction set. The instructions fetched from memory are 8 bits long. Each instruction has an opcode field(2 bits), a register specifier field (3-bits), and a 3-bit immediate field. The opcode field indicates the type of the instruction that was fetched. The register specifier indicates the address of the register in the register file on which the operations are performed. The immediate field is shifted and sign extended to obtain the address of the memory location in load/store instructions. Similarly, in branch and jump instructions, the offset field is used to calculate the address of the memory location the control needs to be transferred to. The format of the instruction set chosen to implement the AV rate-responsive pacemakers is discussed in the Appendix.
Register file XE "Register file"
A register file is a collection of registers in which any register can be read from or written to by specifying the number of the register in the file. Based on the requirements of the design, the size of the register file is decided. For the purposes of implementation of a pacemaker algorithms, a register file of eight registers is sufficient, with three special purpose registers (0–2) and five general purpose registers (3–7), as shown in Figure 10.6. Register “0” always holds the value “zero”. Register “1” is dedicated to the sensed/paced flags. Register “2” is an accumulator in which all the arithmetic calculations are performed. The read/write address port provides a 3-bit address to identify the register being read or written into. The write data port provides 8-bit data to be written into the registers either from ROM/RAM or timers. Read enable control, when asserted enables the register file to provide data at the read data port. Write enable control enables writing of data being provided at the write data port into a register specified by the read/write address.

 EMBED Word.Picture.8

Figure 10.6 A schematic diagram of the register file, timers and ROM/RAM. Three registers of the register file are dedicated for special purposes and the rest are general purpose registers. An instruction register is used to load the instruction fetched from memory.

Timers XE "Timers"
Generally, two or more timers are required to implement any algorithm for a pacemaker. For example, one may be used to measure the AV interval and the other for the pacing interval. The timers are read and written into just as any other memory location. The timers are provided with read and write enable controls.

Arithmetic logic unit XE "Arithmetic logic unit" (ALU)

The arithmetic logic unit is an important component of the microprocessor. It performs the arithmetic operations such as addition, subtraction and logical operations such as AND and OR. The instruction format of ALU instructions consists of an opcode field (2 bits), a function field (2 bits) to indicate the function that needs to be performed, and a register specifier (3 bits) or an immediate field (4 bits) to provide an operand.

Datapath XE "Datapath"
The hardware components discussed above constitute the important components of a datapath. There are some special purpose registers such a program counter (PC) to hold the address of the instruction being fetched from ROM and instruction register(IR) to hold the instruction that is fetched for further decoding and execution. The PC is incremented in each instruction fetch stage to fetch sequential instructions from memory. In the case of a branch or jump instructions, the PC multiplexer allows to choose from the incremented PC value or the branch or jump address calculated. The opcode of the instruction fetched(IR) is provided to the control unit to generate the appropriate sequence of control signals, enabling data flow through the data path. The register specification field of the instruction is given as read/write address to the register file, which provides data from the specified field on the read data port. One port of the ALU is always provided with the contents of the accumulator and the other with the read data port. This design is therefore referred to as accumulator-based architecture. The sign-extended offset is used for address calculation in branch and jump instructions. The timers are used to measure the elapsed interval and are enabled to count down on a low-frequency clock. The timers are read and written into, just as any other memory location. Figure 10.7 shows the datapath.

 EMBED Word.Picture.8

Figure 10.7 Datapath and control of a custom-designed microprocessor-based pacemaker implementing AV rate-responsive algorithm.

Control XE "Control"
In a multicycle implementation, each stage of instruction execution takes one clock cycle. Since the datapath takes multiple clock cycles per instruction, the control must specify the signals to be asserted in each stage and also the next step in the sequence. This can be easily implemented as a finite state machine that is represented graphically in Figure 10.8.

A finite state machine consists of a set of states and directions on how to change states. The directions are defined by a next-state function, which maps the current state and the inputs to a new state. Each stage also indicates the control signals that need to be asserted. Every state in the finite state machine takes one clock cycle. Since the instruction fetch and decode stages are common to all the instructions, the initial two states are common to all the instructions. Step 3 to step 5 differ depending upon the opcode. After the execution of the last step, the finite state machine returns to the fetch state.

 EMBED Word.Picture.8

Figure 10.8 Finite state machine XE "Finite state machine" diagram indicating various states of instruction types. Load instruction takes 5 clock cycles whereas store and ALU instructions take 4 clock cycles. Branch and Jump instructions are the shortest and are completed in 3 clock cycles.

A finite state machine can be implemented with a register that holds the current stage and a block of combinational logic such as a PLA. It determines the datapath signals that need to be asserted as well as the next state. A PLA is described as an array of AND gates followed by an array of OR gates. Since any function can be computed in two levels of logic, the two-level logic of PLA is used for generating control signals.

The occurrence of a wakeup event initiates a stored operating routine corresponding to the event. In the time interval between a completed operating routine and a next wakeup event, the internal logic components of the processor are deactivated and no energy is being expended in performing an operating routine.

A further reduction in the average operating current is obtained by providing a plurality of counting rates to minimize the number of state changes during counting cycles. Thus, intervals which do not require great precision, such as refractory interval, noise interval, or sense interval, may be timed using relatively low counting rates; intervals requiring relatively high precision, such as stimulating pulse width, may be timed using relatively high counting rates.

For more information on datapath design and control specification, an excellent reference is Hennessy and Patterson (1993).

10.5 Dual clock control XE "Dual clock control" of microprocessor

Artificial pacemakers, implanted in patients for long periods of time, are required to function from a single finite source of energy, usually a battery.

Microprocessors can greatly enhance the capabilities of implantable pacemakers at the expense of power requirements. Even though the low current drain demands of CMOS technology has made it possible to implement custom designed pacemakers using microprocessors, the current consumption increases as the frequency of the circuit operation increases. Therefore the higher frequency portions of the circuits must be kept to a minimum and made active only when required.

A microprocessor controls the response of a pacemaker to various external physiological events and internal timer events. It is often desirable to provide different clock frequencies to various timers, to control the resolution of the timers. A single clock signal cannot provide an optimal frequency for the microprocessor operation and also the individual timers. The clock frequency used in such systems is usually too high for the timers and too low for the microprocessor, making it slow. Typically, a single external clock of 100 kHz is used for such systems, with a clock divider to generate clocks of different lower frequencies for various timing signals. This frequency division of the external clock signal is a waste of power. Also, the microprocessor operating at the frequency of the external clock would be slow and introduce delay in responding to external stimuli. Often a frequency multiplier is used to generate a higher frequency clock from the external clock to operate the microprocessor.

 In order to develop a microprocessor-based pacemaker with maximal processing capability and minimal power requirements, a dual clock control is employed (Russie, 1991). In a dual clock control system, a free running low-powered clock is employed to perform the basic timing functions using timers, and a second high power clock is turned on and off when required to perform complex computational functions of the microprocessor as shown in Figure 10.9. Since the events of interest in a cardiac cycle occur at a low frequency, the microprocessor can be deactivated during idle phases. The dual clock control has adapted the microprocessor-based pacemaker for use with the limited energy supply available from a battery by activating internal logic components of the processor only in response to selected events and to perform an operating routine corresponding to the "wakeup" event.

The dual clock-controlled microprocessor has two clocks operating at different frequencies and a clock control unit to synchronize their activation. An external clock of 32 kHz divided by a clock divider into several lower frequencies is used as required by the timers. A second clock of 1 MHz is connected between the clock control unit and microprocessor, for providing a clock signal to the microprocessor in the “wake up” state. This improves the response time of the pacemaker to external events by ten times. Typically, the events that turn on the clock of the microprocessor include timing out of one of the timers, sensing a cardiac event, or telemetry interrupts provided by the interrupt logic unit. The microprocessor in the “wake up” state executes the necessary functions based on the inputs from timers and several other external inputs. After proper execution of the functions required, the microprocessor turns the clock off and enters the “sleep” state. In the time interval between a completed operating routine and a next wakeup event, the internal logic components of the processor are deactivated and no energy is being expended in performing an operating routine.

 EMBED Word.Picture.8

Figure 10.9 A schematic block diagram showing the microprocessor-based pacemaker system with dual clock control. An external low-frequency clock (32 kHz) divided into required lower frequencies for timers. A high-frequency internal clock (1 MHz) is activated in the “wakeup” state of the microprocessor (Russie, 1991).

Russie (1991) described a modified ring oscillator circuit with instant on/off control and the capability of maintaining a high state for a preset period of time, preventing the microprocessor from entering the “wake up” state when the external timers are being updated.

Figure 10.10 shows the clock control circuitry. This circuit has three D flip-flops, and a control gate. The control signals shown are AS (Address Strobe), STOP-CLK, DS (Data Strobe), START, MCLR, and 8 ms. The 8‑ms clock signal is derived from the 32‑kHz clock that has a pulse width of 15 µs, and AS is derived from the 1‑MHz clock of the microprocessor. AS is connected to FF1 and FF2 via an inverter. The STOP-CLK and DS signals are connected to the clock if FF0 via a NAND gate. START and MCLR are connected to the reset terminal of FF0 via a NOR gate. The 8‑ms and MCLR signals are connected to the reset terminals of FF1 and FF2 via a NOR gate. The control gate inhibits the clock when either input of the gate goes high. The MCLR is the master clear signal which goes high when the system is reset. The 8‑ms signal is a clock which is fed to the system timer to clock them at 128 Hz. The clock control circuit responds to signals from the microprocessor such as “data strobe DS”, “address strobe AS” and “STOP-CLOCK” and externally generated signals such as “START”, “8 ms” and “Master Clock - MCLR”.

The “START” signal is turned on when an interrupt occurs. The “STOP-CLOCK” signal is generated by the microprocessor after the successful operation of required functions to turn off the clock. Figure 10.11 shows the response of the ring oscillation-based clock of the microprocessor to “START” and “STOP-CLOCK” signals. The 1‑MHz clock signal corresponds to the output clock. As shown in the figure, the output of the clock is terminated when the “STOP-CLK” signal goes from high to low.

 EMBED Word.Picture.8

Figure 10.10 A schematic diagram illustrating the clock control circuit with “Start” and “Inhibit” control (Russie, 1991). The flip-flops FF1 and FF2 provide synchronization between the 8‑ms clock and the address strobe AS.

 EMBED Word.Picture.8

Figure 10.11 A timing diagram illustrating the correlation in the stop clock inhibit mode (Russie, 1991). The output clock is terminated when the “STOP-CLK” signal goes from high to low.

Figure 10.12 shows the “clock inhibit” mode employed to prevent the microprocessor from reading the value of the timers while they are being clocked by a 128-Hz clock. The 8‑ms clock is the primary clock to the timers. This signal is a pulse one-half the width of the 32‑kHz clock cycle which occurs every 7.8125 ms. The timers are clocked on the falling edge of the 8‑ms clock and the inhibit circuit is inactive as long as the 8 ms is low. This is accomplished by holding FF1 and FF2 in reset states. When the 8‑ms signal goes high, the reset is released. At the trailing edge of the first pulse of AS following the transition from 0 to 1 of the 8‑ms clock, FF1 is clocked triggering Q1 to logic 1. Thus, a logic 1 is applied to the date input of FF2. At the second AS pulse, the output of FF2 (Q2) goes high, which holds the microprocessor in the address decode state until the 8‑ms clock goes to low. Thus, it is guaranteed that 3 µs will be provided from the time the timers are clocked until the first high-to-low transition of the DS, when the data is written or read. FF1 and FF2 provide synchronization between the 8-ms signal derived from the 32-kHz external clock and AS derived from the 1-MHz clock of the microprocessor.

 EMBED Word.Picture.8

Figure 10.12 A timing diagram illustrating the correlation in the predetermined time interval inhibit mode (Russie, 1991).

This dual clock control mechanism in a microprocessor-based pacemaker offers optimal processing capabilities with little power consumption. Also, the clock divider requires less power to generate low-frequency timing signals from the relatively low-frequency external clock.

10.6 Analog-to-digital converter XE "Analog-to-digital converter"
A microprocessor-based pacemaker operates on several analog and digital inputs accessed under the control of the microprocessor and stored in the memory or registers. The analog signals to be processed by the microprocessor need to be converted into an appropriate digital form using analog-to-digital converters (ADCs). Several circuit designs of ADCs using different technologies are patented. An ADC converter optimized for use in battery-powered implantable devices such as a pacemaker is described here.

The ADC converter is implemented in CMOS technology to take advantage of its minimal current drain. The circuitry is configured such that the output signal from the ADC converter represents the analog input signal, independent of the applied clock frequency (Duggan, 1992).

Various analog inputs are sequentially selected and steered to the microprocessor by a multiplexer through an amplifier and an ADC. Multiplexing is used to reduce the hardware required for processing of analog signals and minimize the power requirements. Figure 10.13 shows the functional diagram of the ADC converter.

 EMBED Word.Picture.8

Fig 10.13 Functional block diagram of an ADC as incorporated within a pacemaker (Duggan, 1992).

An analog voltage V(x) to be converted into digital form is connected as input Vin to the voltage-controlled oscillator “VCO” through the switch “S1” when it is in the “up” position. The output of the oscillator is applied to the input of an accumulator counter, capable of counting “up” or “down”. A clock signal is applied to the “divide by n” circuit in the control logic, whose output is coupled to throw switch “S1” to the “down” position. At the same instant, signals are applied to the accumulator switching it to counting down mode and reset the “N” output counter.

This ADC converter operates in the following fashion. The unknown voltage V(x) is applied to the VCO for a fixed period of time, Tup. During this time, the accumulator counter is counting up the output of the VCO, much like an integrator. The accumulator count builds up at a linear rate for a given voltage V(x). Tup is dependent upon the clock frequency applied and the “N” counter. At the end of Tup, the switch “S1” is moved to the 'down' position to connect the input of the VCO to the reference voltage Eref. At the same instant, the accumulator is switched to the counting down mode and the “N” output counter is reset. The zero flag of the accumulator is set when the count reaches zero. The time required to count the reference voltage back to zero is proportional to the average value of the input voltage V(x). While the accumulator is counting back to zero, the Clk frequency is counted by the “N” output counter. Counts accumulated in the “N” counter are in digital form and are directly proportional to the initial unknown voltage V(x).

Since the up count and down count of an accumulator are equal,

Aup = Adown
(10.1)

where the accumulator count is a function of the input “Vin” and the length of the time this voltage is applied to the VCO.

Aup = Cvco V(x) Tup
(10.2)

Adown = Cvco Eref Tx
(10.3)

The effect of constant of scaling of VCO on A/D conversion is eliminated by equating Aup and Adown. The total count of the “N” output counter is given by the clock frequency Fclk and the time taken to count back the accumulator to zero “Tx” i.e.

N(x) = Fclk Tx
(10.4)

Tup is determined by the input clock frequency as a function of “n,” i.e.

Tup = EQ \F(n,Fclk)
(10.5)

From the above equalities,

N(x) = n  EQ \F(V(x),Eref)
(10.6)

The digital output N(x) is independent of the clock frequency, strobe frequency, and the VCO scale factor. Since a single VCO is used for both the analog input and Eref, the effect of the scaling factor of VCO is eliminated. Since the same clock is used to clock the accumulator counter during the counting down mode and the “N” output counter for the same period, the effect of clock frequency on the digital output of the counter indicative of the amplitude of the input signal is eliminated. Therefore, the clock used need not be of high precision, and can be optimally selected to minimize the drain on the power source of the pacemaker. The key point of implementation of the control logic of this ADC is based on the four-bit ring counter, which forces the ADC into one and only one of the four possible modes corresponding to four output states: (1) wait; (2) preset; (3) up count; and (4) down count. In the wait mode of the ADC, the VCO is turned off by disconnecting the unknown and reference voltages. The converter remains in the wait mode until a strobe pulse is received to drive it into preset mode. The accumulator counters are preset during the preset mode, which can last for one-half of a clock period.

This ADC is designed for incorporation into implantable devices. The desirable characteristics such as minimal current drain and insensitivity to clock frequency of the ADC described here, makes it a preferable choice for pacemakers.

10.7 Safety features XE "Safety features"
Pacemakers are designed with several safety features to enhance their performance and improve reliability. Some of the safety concepts such as a watchdog timer, interrupt handler and battery life estimation circuits are discussed here.

10.7.1 Watchdog timer XE "Watchdog timer"
The operating system of a computer controls the various activities of the system. The main program is usually thoroughly debugged before introducing it into a system. However, it is not possible to check alternative paths possible under all operating conditions. Consequently, potential logic faults in the less traversed paths of the main system might prevent the execution sequence from returning to the main program. These faults could prove to be fatal if they happened in a microprocessor-based pacemaker. To guard against these fatal faults and allow the system to recover, a hardware timer called the watchdog timer is implemented in some systems as shown in Figure 10.14. The principle of operation of a watchdog timer is discussed here.

 EMBED Word.Picture.8

Figure 10.14 Watchdog timer operation. The operating system performs various tasks in sequence and reset the timer at the end of each cycle. When a software/hardware fault occurs, the time out signal from the timer requests a reinitialization of the system. Markers are updated when traversed through and are used by the system to diagnose faults. From Kraft, G. D., and Toy, W. N. 1981. Microprogrammed control and reliable design of small computers, Englewood Cliffs, NJ: Prentice Hall.

A hardware timer is run continuously, and reset by the main program periodically if no unusual event occurs to deflect the main program from the normal sequence of execution. When a hardware or software fault occurs, the control cannot return to the main program and the timer is not reset. After a preset period of time, the timed out signal from the watchdog timer issues a high priority interrupt signal to reinitialize the system. The interrupt enables execution of the program from a preestablished checkpoint.

Even though the principle of operation of a watchdog timer is quite simple, considerable attention should be given for careful integration of the timer with the software structure of the system. The timer should always be reset during the normal operation of the program, and a time out signal from the timer should request reinitialization. The time required for execution of one complete cycle of the program depends on the number of active tasks on the system and the time taken for each task. The timer is usually initialized to the maximal cycle time possibly required by all the defined active systems. In order to check whether a program segment is being executed at all, markers are introduced into those segments that get set when traversed. The main program studies the behavior of the markers and takes diagnostic measures to identify if a problem is suspected.

The regulations of the Food and Drug Administration require that, when the watchdog detects a major failure, the implantable device be set in a state that is safe for the patient. If necessary, that state can be nonfunctional.

10.7.2 Redundant pacemaker XE "Redundant pacemaker" system

Redundant backup systems are essential in any life-saving devices. The redundant pacemaker system is a simple pacing circuit, which operates in a VVI mode (Schaldach, 1992). In this mode, the ventricle is sensed and a pulse is applied when the signal is not detected. The redundant circuit is activated, simultaneously deactivating the microprocessor circuit, when a fault is detected in the operation of the microprocessor circuit. This circuit provides stimulation pulses at a fixed predetermined rate.

10.7.3 Interrupt handler XE "Interrupt handler"
The microprocessors designed to perform several complex operations in a pacemaker execute various functions based on the inputs provided under different conditions and the controls enabled. To prevent the possibility of providing more than one request to the microprocessor at a time, an interrupt-handling system is essential to prioritize the requests. Interrupts caused by conditions such as initiation of the telemetric process and low battery conditions are appropriately prioritized and served in that order.

In a simple interrupt-handling system there are two interrupt modes in which the processor can run: an interrupt-enabled mode in which if an interrupt request reaches the processor it is accepted immediately after the execution of the present instruction; and an interrupt-disabled mode in which no interrupt requests are accepted by the processor.

Usually the processor is run in the enabled mode. When an interrupt occurs, the processor automatically switches to disabled mode and enters an interrupt service routine. The interrupt service routine is a sequence of instructions starting at a predetermined location in the memory. The processor executes the specified routine and returns to resume the interrupted process, simultaneously switching the processor to interrupt-enable mode. In order to enable the return of control after servicing the interrupt to the interrupted process, the address of the instruction that was interrupted is saved in a predetermined register.

In the simple two-level interrupt system, the process will not accept any interrupt signals while already servicing an interrupt until the service routine is completed. This might result in losing information about transient interrupts.

If the processor is in interruptable mode, when an interrupt occurs, the response time depends on the maximal execution time of the instruction being executed (during which the interrupt cannot be accepted). However, if a second interrupt occurs, when the processor is already servicing an interrupt, the response time is the maximal execution time of the interrupt service routine.

An interrupt service handler is a process that enables the less critical condition to be interrupted by an interrupt signal from a more critical condition. This processor on entry into an interrupt service routine will enable or disable individual interrupt conditions or groups of conditions, either by hardware or software. The disabled interrupt signals are held pending until the condition is enabled. This interrupt priority structure helps in serving the high priority interrupts as quickly as possible.

In the hardware implementation of a multilevel interrupt system, each interrupt signal is assigned one of the possible interrupt priority levels. If the interrupt signal is at a priority level lower than or the same as the running process, it remains pending. If not, the interrupt is serviced as soon as the current instruction is executed as shown in Figure 10.15. This implementation maintains a stack allowing interrupt routines to be interrupted only by higher priority interrupts.

 EMBED Word.Picture.8

Figure 10.15 A multilevel interrupt system in which a high level priority signal had precedence over lower priority signals. The processes of lower priority are interrupted when a high priority interrupt occurs. On the other hand, the low priority interrupts are kept pending until the completion of higher priority interrupt service routines. From Garside, R. G. 1980. The architecture of digital computers. New York: Oxford University Press.

10.7.4 Battery life estimation XE "Battery life estimation" system

In an artificial pacemaker it is essential to have the circuitry to identify the remaining useful life of battery in a simple and reliable manner. In many pacemaker systems, circuits are provided to measure the internal resistance of the battery to deduce the remaining life. With this circuit, the pacemaker is first switched to “test mode” and a resistive load is applied to the battery to measure the voltage drop. The status of the battery is indicated by generating a series of test pulses. Depending on the internal voltage drop, and thus the internal resistance, the frequency of the stimulation pulse is changed, which is measured externally. However, this circuit can only be used for batteries with increasing internal resistance as the battery discharges.

To overcome the limitations of the previous technique and to measure the life expectancy of a battery with constant internal resistance, another technique was proposed. The battery test circuit is provided with a pulse counter and input logic to measure the consumed charge from the operating parameters of the pacemaker and the number of pulses delivered over a period of time. During each test, the charge delivered since the last battery test is calculated based on the count in the pulse counter, which is then summed to the contents of the charge counter in memory as shown in Figure 10.16. The content of the charge counter is a measure of the total charge consumed and provides information about the remaining life of the battery (Moberg, 1987).

 EMBED Word.Picture.8

Figure 10.16 Battery status test circuit. Charge delivered by the battery is estimated by keeping track of the number of pulses delivered by the pacemaker and the mode of operation. An internal charge counter is updated during each test mode to read the total charge delivered. This information about battery status is read from the pacemaker by telemetry (Moberg, 1987).

The circuit is implemented internally in the implantable device and a means is provided to report the value of the charge counter when interrogated by telemetric methods. The advantage of this method is that there is no need to alter the frequency of stimulation pulses while testing the battery.

10.8 Why CMOS?

Pacemaker circuits include digital and analog units. In digital units, information is processed by turning switches on or off. This technique is reliable, energy-efficient, and used in the timing circuit and programming circuits. In analog units, information is processed by regulating the amount of current or voltage in a system; for example, the sensing circuit uses analog technology to sense the P wave and R wave of the patient’s ECG.

A semiconductor is a crystal (usually silicon, which is normally a nonconductor) that has had its crystal structure deliberately contaminated with other atoms (referred to as doping). These atoms replace silicon atoms in the structure of the crystal but have one valence electron more or less than the four in silicon that are necessary for proper binding. As a result, the doped crystal tends to accept or donate electrons easily from an added atom. The arrangement of semiconductors and metals separated by an insulating silicon oxide forms a transistor.

Very large scale integration (VLSI) is a nonspecific term referring to the technology that produces high-density circuits with the capacity of having thousands of transistors in an area of a few square millimeters.

The abbreviation CMOS is used often in pacemaker advertisements to describe the unit’s circuitry and stands for “Complementary Metallic Oxide Semiconductor.” When an area in a semiconductor that tends to accept electrons is next to an area that tends to donate electrons, they are complementary; electrons can flow in a unidirectional current at very low voltage with little generation of heat. The complex CMOS technology is extremely compact and operates at low energy.

 EMBED Word.Picture.8

Figure 10.17 CMOS inverter configuration. When In = Vdd, Ptran is open and Ntran is closed, so out = 0 V and vice versa.

Digital designs for pacemakers are implemented in the CMOS technology in order to take advantage of the very low current demands of the process. Since virtually no current flows through a logic gate in a steady-state condition, low current drain is achieved in this process. The reason behind low current drain can be understood by analyzing an inverter, implemented in CMOS technology shown in Figure 10.17. In an inverter, the n-channel MOS transistor and a p-channel MOS transistor are connected in series between the terminals of a source (Vdd) and ground, and their input on gates are connected together. When the input of the inverter is high the p transistor will be switched off and the n transistor will be turned on, connecting the Gnd to the output and performing inversion of the input. When the inverter input is low, the p transistor will be turned on and the n transistor off, again creating the inversion operation. In any state, one of the series transistors is off, preventing the existence of current flow between Vdd and Gnd. Though it might appear that the CMOS concept requires no current at all since no current flows in both the states of the inverter, there are several current flow mechanisms that exist. During switching from high to low at the inverter input, both transistors may be on slightly at the same time, and a small amount of current flows. In addition, small electrical capacitances exist that transfer charge during the high-to-low transition and result in small current flows. These two effects explain why current consumption goes up as the frequency of the circuit increases, and therefore the higher frequency portions of the circuits must be kept to a minimum. Small leakage currents also exist for all CMOS processes resulting in a small static current drain. The principles used to construct the basic inverter of complementary p- and n-type transistors from metal, oxide, and semiconductor layers (CMOS) can be expanded to configure more complex type of logic functions.

Other types of semiconductor technology may be used in pacemakers in the future. There is a growing demand for still denser, mixed signal circuitry that operates at lower power. A concurrent trend in chip lithography is submicrometer features, which easily overheat and therefore also must be operated at low power.

As for lower power, reducing the power supply voltage from today’s 5 V to 3 V can lop two-thirds off power consumption, extending the battery life. More fundamentally, as minimal chip geometries edge below 0.5 µm, 3 V becomes a necessity; lines as narrow as that would be overheated by high-frequency signals, and if used on a 5-V chip with a high gate count, would downgrade reliability. There are several engineering issues that need to be considered with 3-V mixed-signal design.

10.9 References

Amado, J. B., Belaza, J., Diaz, A., and Tur, J. B. 1985. Technology of pacemakers electronic circuitry. In F. P. Gomes et al. (eds.) Cardiac pacing: Electrophysiology. Tachyarrhythmias. Mt. Kisco, NY: Futura Publishing.

Baker, R. G., Jr. 1989. A-V responsive rate adaptive pacemaker, US Patent 4,856,524.

Buffet, J., Gautler, J. P., and Jacquet, J. P. 1982. The software pacemaker. In G. A. Feruglio (ed.) Cardiac pacing: electrophysiology and pacemaker technology. Padova, Italy: Piccin Medical Books.

Buffet, J., Gautler, J. P., and Jacquet, J. P. 1982. The software pacemaker - Feasibility of recording pacemaker. In S. S. Barold and J. Mugica (eds.)The third decade of cardiac pacing: advances in technology and clinical applications. Mount Kisco, NY: Futura Publishing.

Buffet, J., Meunier, J. F., Gautler, J. P., and Jacquet, J. P. 1982. Technology and reliability of microprocessors used in pacemaking. In S. S. Barold and J. Mugica (eds.)The third decade of cardiac pacing: advances in technology and clinical applications. Mount Kisco, NY: Futura Publishing.

Dassen, W. R. M., Dulk, K. D., and Wellens, H. J. J. 1988. Modern pacemakers: Implantable artificial intelligence? PACE, 11: 2114–2120.

Dassen, W. R. M., Steld, A. V., Braam, W. V., Dulk, K. D., Gorgels, A. P. M., Brugada, P., and Wellens, H. J. J. 1985. PACTOT: A reprogrammable software pacing system. PACE, 8: 574–578.

Dassen, W., Steld, A. V., Dulk, K. D., Brugada, P., and Wellens, H. 1984. The soft pacemaker: A new approach in pacemaker design? Computers in cardiology, 4: 529–532.

Duggan, S. R. 1992. Analog to digital converter, US Patent: 5,092,330.

Einspruch, N. G, and Gold, R. D. 1989. VLSI electronics microstructure science, VLSI in medicine :17, Orlando, FL: Academic Press.

Fromer, M., Shenasa, M., Kus, T., and Pagé, P. 1987. Management of a patient with recurrent sustained ventricular tachycardia with a new software-based antitachycardia pacemaker. J. Electrophysiol., 1: 133–139.

Gaggini, G., Garberoglio, B., and Silvestri, L. 1992. Mixed microprocessor-random logic approach for innovative pacing systems. PACE, 15: 1858–1861.

Garside, R. G. 1980. The architecture of digital computers. New York: Oxford University Press.

Harrigal, C. E., and Walter, R. A. 1990. The development of a microprocessor controlled implantable device. Proc. IEEE Northeast Bioengineering Conf., 3: 137–138.

Hartlaub, J. 1982. Pacemaker of the future: Microprocessor based or custom circuit? In S. S. Barold and J. Mugica (eds.)The third decade of cardiac pacing: advances in technology and clinical applications. Mount Kisco, NY: Futura Publishing.

Kraft, G. D., and Toy, W. N. 1981. Microprogrammed control and reliable design of small computers, Englewood Cliffs, NJ: Prentice Hall.

Hennessy, J. L., and Patterson, D. A. 1993. Computer organization & design: The hardware/software interface. San Mateo, CA: Morgan Kaufmann.

Moberg, L. 1987. Battery test circuit for a heart pacemaker. US patent 4,715,381.

Russie, R. J. 1991. Implantable cardiac device with dual clock control of microprocessor. US Patent 5,022,395.

Schaldach, M. 1992. Electrotherapy of the Heart. Berlin: Springer-Verlag.

Stotts, L. J., Infinger, K. R., Babka, J., and Genzer, D. 1989. An 8-bit microcomputer with analog subsystems for implantable biomedical application. IEEE J. Solid-state Circuits, 24: 292–300.

Wittkampf, F. H. M., Candelon, B., and Arragon, G. W. 1984. The importance of software programmable pacemakers: In vivo programming of a prototype device. PACE, 7: 1207–1212.

10.10 Instructional objectives

10.1
Explain the differences between a microprocessor and a custom random circuit pacemaker.

10.2
Explain the design of a state machine-based pacemaker.

10.3
Explain how a microprocessor-based pacemaker differs from a state machine.

10.4
List the basic components of a microprocessor and briefly explain the functions of each.

10.5
Summarize the design process of a microprocessor-based pacemaker and the issues involved in optimizing the performance of the system.

10.6
Explain the advantages in using a dual clock control mechanism in a microprocessor-based pacemaker and draw the block diagram.

10.7
Briefly explain the design of a low-power analog-to-digital converter.

10.8
Explain the function and advantages of a watchdog timer.

10.9
Explain the advantage of a redundant pacemaker and when it is used.

10.10
Explain the functions of an interrupt handler in a microprocessor-based pacemaker.

10.11
Explain why CMOS technology is an ideal choice for a pacemaker.

_1087479755.unknown

_1087479757.unknown

_1087479758.unknown

_1087479756.unknown

_1087479750.unknown

_1087479752.unknown

_1087479753.unknown

_1087479751.unknown

_1087479748.unknown

_1087479749.unknown

_1087479746.unknown

_1087479747.unknown

_1087479743.unknown

_1087479744.unknown

_1087479742.unknown

