POLITONG - SHANGHAI

ELECTRONICS DEVICES -September 2012

NAME (Pinyin/Italian): \qquad

MATRICULATION NUMBER:

\qquad

SIGNATURE: \qquad

NOTES:

- Use only these pages (including the back) for answers.
- Use of any book, note or other didactic material is not allowed. Only the use of simple calculator is allowed (notebooks or electronic tablets of any kind are not allowed).
- Write clearly and be explicit and concise in your answers. Include the basic formulas and logical steps used to reach the results. Provide the final numerical values.
- Questions in bold are considered more difficult.

Exercise 1

a) Consider the resistor shown in Fig.1. Determine the value of the diameter \boldsymbol{d} of the half circle of surface \boldsymbol{S} to have a value of resistance $\mathbf{R}=\mathbf{1 0} \mathbf{k}$.
b) Given the current $\mathbf{I}=\mathbf{1 m A}$ flowing in the resistor, calculate the applied electric field \boldsymbol{F}.
c) Compensate now the semiconductor with acceptors. Calculate the concentration \mathbf{N}_{A} necessary to have still a n-type material with a concentration of majority carriers 10^{6} times larger than the concentration of minority carriers.

Figure 1

Electron charge	$\mathrm{q}=1.6 \cdot 10^{-19} \mathrm{C}$
Electron mobility	$\mu_{\mathrm{n}}=1400 \mathrm{~cm}^{2} / \mathrm{Vs}$
Hole mobility	$\mu_{\mathrm{p}}=400 \mathrm{~cm}^{2} / \mathrm{Vs}$

d) Consider again the semiconductor with floating terminals (no current flowing) and with a gradient of doping between the two opposite surfaces (the ones where the terminals are applied) given by $N_{D 1}=10^{16} \mathrm{~cm}^{-3}$ and $\mathrm{N}_{\mathrm{D} 2}=5 \cdot 10^{16} \mathrm{~cm}^{-3}$. Determine the voltage difference in the semiconductor which is set between the two surfaces by the doping difference.

Exercise 2

a) Consider the pn junction at equilibrium represented in Fig.2. Supposing $\mathbf{N}_{\mathrm{D}} \gg \mathbf{N}_{\mathrm{A}}$ and the width of the depletion layer $\mathbf{W}=\mathbf{1 1 0} \mathbf{n m}$, calculate the built-in voltage $\boldsymbol{\phi}_{i}$ and the doping \mathbf{N}_{D}, justifying the approximation above.
b) Consider to bias the junction with a reverse voltage $\mathbf{V}_{\mathbf{R}}=10 \mathrm{~V}$. Calculate the maximum electric field $\boldsymbol{F}_{\text {MAX }}$ in the junction and the depletion capacitance (per unit of area) C_{j}. Justify used approximations.

Consider now the junction forward biased with $\mathbf{V}_{\mathbf{D}} \mathbf{= 0 . 6 5 V}$.
c) Determine if it is a short or long diode in the two regions.
d) Calculate the minority carriers concentration at the border of the neutral zone: $\mathbf{n}\left(-\mathbf{x}_{\mathrm{p}}\right)$ and $\mathbf{p}\left(\mathbf{x}_{\mathrm{n}}\right)$. Draw the minority carriers profile in the two regions.
e) Find the voltage V_{D} at which the diffusion capacitance $C^{\prime}{ }_{d}$ is equal to the depletion capacitance C_{j}^{\prime} (both per unit of area).

Exercise 3

Consider the MOS junction shown in Fig.3a with parameters reported in Table 3.a.
a) Given a potential difference $\Delta \mathrm{V}_{\mathrm{SD}}=0.67 \mathrm{~V}$ in the silicon at threshold condition, calculate the doping concentration $\mathbf{N}_{\mathbf{A}}$.
b) Calculate the threshold voltage $\mathbf{V}_{\mathbf{T}}$.

Consider now the MOSFET shown in Fig.3b with parameters reported in Table 3.b and based on the same MOS structure considered at points a) and b).
c) Calculate the channel conductance \mathbf{G}_{CH} at the bias conditions: $\mathrm{V}_{\mathrm{SB}}=\mathbf{0}, \mathrm{V}_{\mathrm{GS}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.6 \mathrm{~V}$.
d) Given $\mathbf{V}_{\mathbf{S B}}=\mathbf{0}, \mathbf{V}_{\mathbf{G S}}=\mathbf{2 . 0} \mathbf{V}$ and $\mathbf{V}_{\mathrm{DS}}=\mathbf{2 . 0} \mathbf{V}$, determine the operation region of the MOSFET and calculate the transconductance $\boldsymbol{g}_{\boldsymbol{m}}$.
e) Operate the MOSFET at $\mathrm{V}_{\mathrm{SB}}=\mathbf{0}, \mathrm{V}_{\mathrm{GS}}=\mathbf{2} .0 \mathrm{~V}$ in ohmic region and determine $V_{D S}$ to have 50% of the transconductance of the point d).

$]^{\text {G }}$	Flat-band voltage $V_{F B}=-0.7 \mathrm{~V}$ $\mathrm{t}_{\mathrm{Ox}}=80 \mathrm{~nm}$
Al	
Oxide $\hat{l}^{\text {tox }}$	
$\underset{\substack{\text { silicon } \\ N_{A}}}{ }$	Table 3.a
AI	
, в Figure 3.a	
- G	$\begin{aligned} & \mathrm{L}=10 \mu \mathrm{~m} \\ & \mathrm{~W}=100 \mu \mathrm{~m} \\ & \mu_{\mathrm{n}}=1400 \mathrm{~cm}^{2} / \mathrm{Vs} \end{aligned}$
So Al	
${ }_{\text {Al }}$	
- ${ }^{\text {}}$	
Figure 3.b	Table 3.b
Intrinsic concentration	$\begin{aligned} & \mathrm{n}_{\mathrm{i}}=1.45 \cdot 10^{10} \mathrm{~cm}^{-3} \\ & \varepsilon_{0}=8.85 \cdot 10^{-14} \mathrm{~F} / \mathrm{cm} \end{aligned}$
Dielectric constant in vacuum	
Relative dielectric contant in Si	$\varepsilon_{\mathrm{r}-\mathrm{Si}}=11.7$
Dielectric constant in Si	$\begin{aligned} & \varepsilon_{\mathrm{Si}}=\varepsilon_{0} \cdot \varepsilon_{\mathrm{r}-\mathrm{Si}} \approx 1 \mathrm{pF} / \mathrm{cm} \\ & \mathrm{k}=1.38 \cdot 10^{-23} \mathrm{~J} / \mathrm{K} \end{aligned}$
Boltzmann constant	
Thermal voltage	$\mathrm{V}_{\mathrm{TH}}=25 \mathrm{mV}$
Electron charge	$\mathrm{q}=1.6 \cdot 10^{-19} \mathrm{C}$
Dielectric constant in Oxide	$\varepsilon_{O x}=\varepsilon_{0} \varepsilon_{r-O x} \approx 1 / 3 \mathrm{pF} / \mathrm{cm}$

Theory question \#1:

Demonstrate the formula of the drift current in a semiconductor. Ohm law, conducibility, resistance, dependence from dopant concentration. Why in semiconductors there is a bipolar current? Give its expression.

Theory question \#2:

MOSFET transistor: discuss the change current with the drain voltage in relation to a change of the pinch-off point. What it is introduced in the transistor model to take into account of this phenomenon?

