POLITONG – SHANGHAI

ELECTRONICS DEVICES - September 2012

NAME (Pinyin/Italian):.....

MATRICULATION NUMBER:.....

SIGNATURE:.....

NOTES:

- Use only these pages (including the back) for answers.
- Use of any book, note or other didactic material is not allowed. Only the use of simple calculator is allowed (notebooks or electronic tablets of any kind are not allowed).
- Write clearly and be explicit and concise in your answers. Include the basic formulas and logical steps used to reach the results. Provide the final numerical values.
- Questions in bold are considered more difficult.

Exercise 1

- a) Consider the resistor shown in Fig.1. Determine the value of the diameter *d* of the half circle of surface *S* to have a value of resistance R=10kΩ.
- b) Given the current **I= 1mA** flowing in the resistor, calculate the applied electric field **F**.
- c) Compensate now the semiconductor with acceptors. Calculate the concentration N_A necessary to have still a n-type material with a concentration of majority carriers 10^6 times larger than the concentration of minority carriers.

d) Consider again the semiconductor with floating terminals (no current flowing) and with a gradient of doping between the two opposite surfaces (the ones where the terminals are applied) given by N_{D1} = 10¹⁶ cm⁻³ and N_{D2} = 5·10¹⁶ cm⁻³. Determine the voltage difference in the semiconductor which is set between the two surfaces by the doping difference.

Exercise 2

- a) Consider the pn junction at equilibrium represented in Fig.2. Supposing $N_D >> N_A$ and the width of the depletion layer **W=110nm**, calculate the built-in voltage ϕ_i and the doping N_D , justifying the approximation above.
- b) Consider to bias the junction with a reverse voltage V_R =10V. Calculate the maximum electric field F_{MAX} in the junction and the depletion capacitance (per unit of area) C'_j. Justify used approximations.

Consider now the junction forward biased with $V_D=0.65V$.

- c) Determine if it is a short or long diode in the two regions.
- d) Calculate the minority carriers concentration at the border of the neutral zone: n(-x_p) and p(x_n). Draw the minority carriers profile in the two regions.
- e) Find the voltage V_D at which the diffusion capacitance C'_d is equal to the depletion capacitance C'_j (both per unit of area).

Exercise 3

Consider the MOS junction shown in **Fig.3a** with parameters reported in **Table 3.a**.

- a) Given a potential difference ΔV_{SD} =0.67V in the silicon <u>at threshold condition</u>, calculate the doping concentration **N**_A.
- b) Calculate the threshold voltage $\boldsymbol{V}_{T\!\text{-}}$

Consider now the MOSFET shown in **Fig.3b** with parameters reported in **Table 3.b** and based on the same MOS structure considered at points a) and b).

- c) Calculate the channel conductance G_{CH} at the bias conditions: $V_{SB}=0$, $V_{GS}=2.0V$, $V_{DS}=0.6V$.
- d) Given V_{SB}=0, V_{GS}=2.0V and V_{DS}=2.0V, determine the operation region of the MOSFET and calculate the transconductance g_m.
- e) Operate the MOSFET at V_{SB} =0, V_{GS} =2.0V in ohmic region and determine V_{DS} to have 50% of the transconductance of the point d).

Theory question #1:

Demonstrate the formula of the drift current in a semiconductor. Ohm law, conducibility, resistance, dependence from dopant concentration. Why in semiconductors there is a bipolar current? Give its expression.

Theory question #2:

MOSFET transistor: discuss the change current with the drain voltage in relation to a change of the pinch-off point. What it is introduced in the transistor model to take into account of this phenomenon?