POLITONG – SHANGHAI

ELECTRONICS DEVICES - June 2012

NAME (Pinyin/Italian):.....

MATRICULATION NUMBER:.....

SIGNATURE:.....

NOTES:

- Use only these pages (including the back) for answers.
- Use of any book, note or other didactic material is not allowed. Only the use of simple calculator is allowed (notebooks or electronic tablets of any kind are not allowed).
- Write clearly and be explicit and concise in your answers. Include the basic formulas and logical steps used to reach the results. Provide the final numerical values.
- Questions in bold are considered more difficult.

Exercise 1

- a) Consider the resistor shown in Fig.1. Determine the donors concentration N_D to have a value of resistance R=200 Ω .
- b) Given the electron mobility μ_n and the effective mass of the electron $m_n=0.12m_0$, calculate the relaxation time τ_n for the electrons.
- c) Compensate now the semiconductor with acceptors to increase the resistance. Which is the concentration N_A necessary to have a value of resistance R=2k Ω ? (consider the mobility not modified by the different dopants concentrations)
- d) Supposing now the relaxation time τ_n inversely proportional to the dopants concentration, determine the mobility μ_n of the material in the conditions at point c).

Exercise 2

- a) Consider the pn junction at equilibrium represented in **Fig.2**. Calculate the built-in voltage ϕ_i , the width of the depletion layer and specify the type of junction.
- b) Consider to bias the junction with a reverse voltage V_R =15V. Calculate the maximum electric field F_{MAX} in the junction. Justify used approximations.
- c) Calculate the capacitance of the junction biased at point b).

Consider now the junction forward biased with $V_p=0.62V$.

- d) Determine if it is a short or long diode in the two regions.
- e) Calculate the minority carriers concentration at the border of the neutral zone: n(-x_p) and p(x_n). Draw the minority carriers profile in the two regions.
- f) From the forward bias condition above, the diode is suddenly biased with a <u>reverse</u> current density of $J=1mA/cm^2$. Give an estimation of the time necessary for the diode to reach the condition $V_D=0V$.

Exercise 3

Consider the MOS junction shown in **Fig.3a** with parameters reported in **Table 3.a**.

- a) Given a potential difference ΔV_{SD} =0.65V in the silicon <u>at threshold condition</u>, calculate the doping concentration **N**_A.
- b) Determine the oxide thickness t_{ox} to have a threshold voltage $V_T=0.7V_{\perp}$

Consider now the MOSFET shown in **Fig.3b** with parameters reported in **Table 3.b** and based on the same MOS structure considered at point a).

- c) Calculate the transistor width **W** to have a channel conductance G_{CH} =0.3mS at the bias conditions: V_{SB} =0, V_{GS} =1.5V, V_{DS} =0.5V.
- d) Given V_{SB}=0, V_{GS}=1.5V, determine V_{DS} to have the channel charge Q_{CH}(D) at the drain point equal to 90% of the channel charge Q_{CH}(S) at the source point. (charge is per unit of area)
- e) Consider the MOSFET biased now at $V_{SB}=0$, $V_{GS}=1.5V$, $V_{DS}=3V$. Consider an increase of the Drain voltage of 1V which produces a variation of the channel length of the transistor ($L\rightarrow L'$) of 10%. Is L'<L or L'>L? Calculate the output resistance of the transistor. Calculate the maximum gain achievable for the transistor used as amplifier.

Theory question #1:

Introduce the concept of mobility of charges in semiconductor: intuitive demonstration of proportionality between velocity and electric field, relaxation time. Discuss the effective mass concept.

Theory question #2:

Describe the inversion condition in a MOS junction. Calculate the expression of the Threshold voltage. Justify possible approximations made.