POLITONG - SHANGHAI

ELECTRONICS DEVICES -June 2012

NAME (Pinyin/Italian): \qquad

MATRICULATION NUMBER:

\qquad

SIGNATURE: \qquad

NOTES:

- Use only these pages (including the back) for answers.
- Use of any book, note or other didactic material is not allowed. Only the use of simple calculator is allowed (notebooks or electronic tablets of any kind are not allowed).
- Write clearly and be explicit and concise in your answers. Include the basic formulas and logical steps used to reach the results. Provide the final numerical values.
- Questions in bold are considered more difficult.

Exercise 1

a) Consider the resistor shown in Fig.1. Determine the donors concentration \mathbf{N}_{D} to have a value of resistance $\mathrm{R}=200 \Omega$.
b) Given the electron mobility μ_{n} and the effective mass of the electron $m_{n}=0.12 m_{0}$, calculate the relaxation time τ_{n} for the electrons.
c) Compensate now the semiconductor with acceptors to increase the resistance. Which is the concentration \mathbf{N}_{A} necessary to have a value of resistance $\mathrm{R}=2 \mathrm{k} \Omega$? (consider the mobility not modified by the different dopants concentrations)
d) Supposing now the relaxation time τ_{n} inversely proportional to the dopants concentration, determine

Figure 1
Electron charge
Electron mobility
Hole mobility
Electron effective mass
Electron rest mass

$$
\begin{aligned}
& \mathrm{q}=1.6 \cdot 10^{-19} \mathrm{C} \\
& \mu_{\mathrm{n}}=1400 \mathrm{~cm}^{2} / \mathrm{Vs} \\
& \mu_{\mathrm{p}}=400 \mathrm{~cm}^{2} / \mathrm{Vs} \\
& \mathrm{~m}_{\mathrm{n}}=0.12 \mathrm{~m}_{0} \\
& \mathrm{~m}_{0}=9.1 \cdot 10^{-31} \mathrm{Kg}
\end{aligned}
$$ the mobility μ_{n} of the material in the conditions at point c).

Exercise 2

a) Consider the pn junction at equilibrium represented in Fig.2. Calculate the built-in voltage ϕ_{i}, the width of the depletion layer and specify the type of junction.
b) Consider to bias the junction with a reverse voltage $\mathbf{V}_{\mathrm{R}}=15 \mathrm{~V}$. Calculate the maximum electric field $\boldsymbol{F}_{\mathrm{MAX}}$ in the junction. Justify used approximations.
c) Calculate the capacitance of the junction biased at point b).

Consider now the junction forward biased with $\mathbf{V}_{\mathbf{D}} \mathbf{= 0 . 6 2 V}$.
d) Determine if it is a short or long diode in the two regions
e) Calculate the minority carriers concentration at the border of the neutral zone: $\mathbf{n}\left(-\mathbf{x}_{\mathrm{p}}\right)$ and $\mathbf{p}\left(\mathbf{x}_{\mathrm{n}}\right)$. Draw the minority carriers profile in the two regions.
f) From the forward bias condition above, the diode is suddenly biased with a reverse current density of $J=1 \mathrm{~mA} / \mathrm{cm}^{2}$. Give an estimation of the time necessary for the diode to reach the condition $\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$.

Exercise 3

Consider the MOS junction shown in Fig.3a with parameters reported in Table 3.a.
a) Given a potential difference $\Delta \mathrm{V}_{\mathrm{SD}}=0.65 \mathrm{~V}$ in the silicon at threshold condition, calculate the doping concentration $\mathbf{N}_{\mathbf{A}}$.
b) Determine the oxide thickness $\boldsymbol{t}_{o x}$ to have a threshold voltage $\mathbf{V}_{\mathrm{T}}=\mathbf{0 . 7 V}$.

Consider now the MOSFET shown in Fig. $\mathbf{3 b}$ with parameters reported in Table 3.b and based on the same MOS structure considered at point a).
c) Calculate the transistor width \mathbf{W} to have a channel conductance $\mathbf{G}_{\mathbf{C H}}=\mathbf{0 . 3 \mathrm { mS }}$ at the bias conditions: $\mathrm{V}_{\mathrm{SB}}=0, \mathrm{~V}_{\mathrm{GS}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.5 \mathrm{~V}$.
d) Given $\mathbf{V}_{\mathrm{SB}}=\mathbf{0}, \mathbf{V}_{\mathrm{GS}}=\mathbf{1 . 5} \mathbf{V}$, determine \mathbf{V}_{DS} to have the channel charge $\mathbf{Q}_{\mathbf{C H}}(\mathbf{D})$ at the drain point equal to $\mathbf{9 0 \%}$ of the channel charge $\mathbf{Q}_{\mathrm{CH}}(\mathrm{S})$ at the source point. (charge is per unit of area)
e) Consider the MOSFET biased now at $\mathrm{V}_{\mathrm{SB}}=0$, $\mathrm{V}_{\mathrm{GS}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=3 \mathrm{~V}$. Consider an increase of the Drain voltage of 1 V which produces a variation of the channel length of the transistor ($L \rightarrow L^{\prime}$) of 10%. Is L'<L or L'>L? Calculate the output resistance of the transistor. Calculate the maximum gain achievable for the transistor used as amplifier.

Intrinsic concentration
Dielectric constant in vacuum
Relative dielectric contant in Si
Dielectric constant in Si
Boltzmann constant
Thermal voltage
Electron charge
Dielectric constant in Oxide
$\mathrm{n}_{\mathrm{i}}=1.45 \cdot 10^{10} \mathrm{~cm}^{-3}$
$\varepsilon_{0}=8.85 \cdot 10^{-14} \mathrm{~F} / \mathrm{cm}$
$\varepsilon_{\mathrm{r}-\mathrm{Si}}=11.7$
$\varepsilon_{\mathrm{Si}}=\varepsilon_{0} \cdot \varepsilon_{\mathrm{r}-\mathrm{Si}} \approx 1 \mathrm{pF} / \mathrm{cm}$
$\mathrm{k}=1.38 \cdot 10^{-23} \mathrm{~J} / \mathrm{K}$
$\mathrm{V}_{\mathrm{TH}}=25 \mathrm{mV}$
$\mathrm{q}=1.6 \cdot 10^{-19} \mathrm{C}$
$\varepsilon_{\mathrm{Ox}}=\varepsilon_{0} \varepsilon_{\mathrm{r}-\mathrm{Ox}} \approx 1 / 3 \mathrm{pF} / \mathrm{cm}$

Theory question \#1:

Introduce the concept of mobility of charges in semiconductor: intuitive demonstration of proportionality between velocity and electric field, relaxation time. Discuss the effective mass concept.

Theory question \#2:

Describe the inversion condition in a MOS junction. Calculate the expression of the Threshold voltage. Justify possible approximations made.

